skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Smith, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. BACKGROUND Expert feedback lays the foundation of rigorous research. However, the rapid growth of scholarly production challenges the conventional scienti c feedback mechanisms. High-quality peer reviews are increasingly dif cult to obtain. METHODS We created an automated pipeline using Generative Pretrained Transformer 4 (GPT-4) to provide comments on scienti c papers. We evaluated the quality of GPT-4’s feedback through two large-scale studies. We rst quantitatively compared GPT-4’s gen- erated feedback with human peer reviewers’ feedback in general scienti c papers from 15 Nature family journals (3096 papers in total) and the International Conference on Learning Representations (ICLR) machine learning conference (1709 papers). To speci - cally assess GPT-4’s performance on biomedical papers, we also analyzed a subset of 425 health sciences papers from the Nature portfolio and a random sample of 666 sub- missions to eLife. Additionally, we conducted a prospective user study with 308 research- ers from 110 institutions in the elds of arti cial intelligence and computational biology to understand how researchers perceive feedback generated by our system on their own papers. RESULTS The overlap in the points raised by GPT-4 and by human reviewers (average overlap of 30.85% for Nature journals and 39.23% for ICLR) is comparable with the over- lap between two human reviewers (average overlap of 28.58% for Nature journals and 35.25% for ICLR). Results on eLife and a subset of health sciences papers as categorized by the Nature portfolio show similar patterns. In our prospective user study, more than half (57.4%) of the users found GPT-4–generated feedback helpful/very helpful, and 82.4% found it more bene cial than feedback from at least some human reviewers. We also identify several limitations of large language model (LLM)–generated feedback. CONCLUSIONS Through both retrospective and prospec- tive evaluation, we nd substantial overlap between LLM and human feedback as well as positive user perceptions regarding the usefulness of LLM feedback. Although human expert review should continue to be the foundation of the scienti c process, LLM feedback could bene t researchers, especially when timely expert feedback is not available and in earlier stages of manuscript preparation. (Funded by the Chan–Zuckerberg Initiative and the Stanford Interdisciplin- ary Graduate Fellowship.) 
    more » « less
  2. Objective: To establish the sensitivity of magnetic resonance elastography (MRE) to active muscle contraction in multiple muscles of the forearm. Methods: We combined MRE of forearm muscles with an MRI-compatible device, the MREbot, to simultaneously measure the mechanical properties of tissues in the forearm and the torque applied by the wrist joint during isometric tasks. We measured shear wave speed of thirteen forearm muscles via MRE in a series of contractile states and wrist postures and fit these outputs to a force estimation algorithm based on a musculoskeletal model. Results: Shear wave speed changed significantly upon several factors, including whether the muscle was recruited as an agonist or antagonist (p = 0.0019), torque amplitude (p ≤ 0.0001), and wrist posture (p = 0.0002). Shear wave speed increased significantly during both agonist (p ≤ 0.0001) and antagonist (p = 0.0448) contraction. Additionally, there was a greater increase in shear wave speed at greater levels of loading. The variations due to these factors indicate the sensitivity to functional loading of muscle. Under the assumption of a quadratic relationship between shear wave speed and muscle force, MRE measurements accounted for an average of 70% of the variance in the measured joint torque. Conclusion: This study shows the ability of MM-MRE to capture variations in individual muscle shear wave speed due to muscle activation and presents a method to estimate individual muscle force through MM-MRE derived measurements of shear wave speed. Significance: MM-MRE could be used to establish normal and abnormal muscle co-contraction patterns in muscles of the forearm controlling hand and wrist function. 
    more » « less
  3. ABSTRACT Conspecific density dependence (CDD) in plant populations is widespread, most likely caused by local‐scale biotic interactions, and has potentially important implications for biodiversity, community composition, and ecosystem processes. However, progress in this important area of ecology has been hindered by differing viewpoints on CDD across subfields in ecology, lack of synthesis across CDD‐related frameworks, and misunderstandings about how empirical measurements of local CDD fit within the context of broader ecological theories on community assembly and diversity maintenance. Here, we propose a conceptual synthesis of local‐scale CDD and its causes, including species‐specific antagonistic and mutualistic interactions. First, we compare and clarify different uses of CDD and related concepts across subfields within ecology. We suggest the use of local stabilizing/destabilizing CDD to refer to the scenario where local conspecific density effects are more negative/positive than heterospecific effects. Second, we discuss different mechanisms for local stabilizing and destabilizing CDD, how those mechanisms are interrelated, and how they cut across several fields of study within ecology. Third, we place local stabilizing/destabilizing CDD within the context of broader ecological theories and discuss implications and challenges related to scaling up the effects of local CDD on populations, communities, and metacommunities. The ultimate goal of this synthesis is to provide a conceptual roadmap for researchers studying local CDD and its implications for population and community dynamics. 
    more » « less
  4. We report the implementation of a symmetry-adapted perturbation theory algorithm based on a density functional theory [SAPT(DFT)] description of monomers. The implementation adopts a density-fitting treatment of hybrid exchange–correlation kernels to enable the description of monomers with hybrid functionals, as in the algorithm by Bukowski, Podeszwa, and Szalewicz [Chem. Phys. Lett. 414, 111 (2005)]. We have improved the algorithm by increasing numerical stability with QR factorization and optimized the computation of the exchange–correlation kernel with its 2-index density-fitted representation. The algorithm scales as O( N 5 ) formally and is usable for systems with up to ∼3000 basis functions, as demonstrated for the C 60 –buckycatcher complex with the aug-cc-pVDZ basis set. The hybrid-kernel-based SAPT(DFT) algorithm is shown to be as accurate as SAPT(DFT) implementations based on local effective exact exchange potentials obtained from the local Hartree–Fock (LHF) method while avoiding the lower-scaling [ O( N 4 )] but iterative and sometimes hard-to-converge LHF process. The hybrid-kernel algorithm outperforms Hartree–Fock-based SAPT (SAPT0) for the S66 test set, and its accuracy is comparable to the many-body perturbation theory based SAPT2+ approach, which scales as O( N 7 ), although SAPT2+ exhibits a more narrow distribution of errors. 
    more » « less
  5. Abstract Objective.In vivoimaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.Approach. In this study, we analyze the anisotropic mechanical response of calf muscles using MRE with a transversely isotropic, nonlinear inversion algorithm (TI-NLI) to investigate the role of muscle fiber stiffening under load. We estimate anisotropic material parameters including fiber shear stiffness ( μ 1 ), substrate shear stiffness ( μ 2 ), shear anisotropy ( ϕ ), and tensile anisotropy ( ζ ) of the gastrocnemius muscle in response to both passive and active tension.Main results. In passive tension, we found a significant increase in μ 1 , ϕ , and ζ with increasing muscle length. While in active tension, we observed increasing μ 2 and decreasing ϕ and ζ during active dorsiflexion and plantarflexion—indicating less anisotropy—with greater effects when the muscles act as agonist.Significance. The study demonstrates the ability of this anisotropic MRE method to capture the multifaceted mechanical response of skeletal muscle to tissue loading from muscle lengthening and contraction. 
    more » « less
  6. Punzo, Francesco (Ed.)
    To enhance the solubility of orally administered pharmaceuticals, liquid capsules or amorphous tablets are often preferred over crystalline drug products. However, little is known regarding the variation in bonding mechanisms between pharmaceutical molecules in their different disordered forms. In this study, liquid and melt-quenched glassy carbamazepine have been studied using high energy X-ray diffraction and modeled using Empirical Potential Structure Refinement. The results show significant structural differences between the liquid and glassy states. The liquid shows a wide range of structures; from isolated molecules, to aromatic ring correlations and NH-O hydrogen bonding. Upon quenching from the liquid to the glass the number of hydrogen bonds per molecule increases by ~50% at the expense of a ~30% decrease in the close contact (non-bonded) carbon-carbon interactions between aromatic rings. During the cooling process, there is an increase in both singly and doubly hydrogen-bonded adjacent molecules. Although hydrogen-bonded dimers found in the crystalline states persist in the glassy state, the absence of a crystalline lattice also allows small, hydrogen-bonded NH-O trimers and tetramers to form. This proposed model for the structure of glassy carbamazepine is consistent with the results from vibrational spectroscopy and nuclear magnetic resonance. 
    more » « less
  7. null (Ed.)
  8. Abstract Janzen–Connell effects (JCEs), specialised predation of seeds and seedlings near conspecific trees, are hypothesised to maintain species richness. While previous studies show JCEs can maintain high richness relative to neutral communities, recent theoretical work indicates JCEs may weakly inhibit competitive exclusion when species exhibit interspecific fitness variation. However, recent models make somewhat restrictive assumptions about the functional form of specialised predation—that JCEs occur at a fixed rate when offspring are within a fixed distance of a conspecific tree. Using a theoretical model, I show that the functional form of JCEs largely impacts their ability to maintain coexistence. If predation pressure increases additively with adult tree density and decays exponentially with distance, JCEs maintain considerably higher species richness than predicted by recent models. Loosely parameterising the model with data from a Panamanian tree community, I elucidate the conditions under which JCEs are capable of maintaining high species richness. 
    more » « less
  9. While it is commonly assumed that farmers have higher, and foragers lower, fertility compared to populations practicing other forms of subsistence, robust supportive evidence is lacking. We tested whether subsistence activities—incorporating market integration—are associated with fertility in 10,250 women from 27 small-scale societies and found considerable variation in fertility. This variation did not align with group-level subsistence typologies. Societies labeled as “farmers” did not have higher fertility than others, while “foragers” did not have lower fertility. However, at the individual level, we found strong evidence that fertility was positively associated with farming and moderate evidence of a negative relationship between foraging and fertility. Markers of market integration were strongly negatively correlated with fertility. Despite strong cross-cultural evidence, these relationships were not consistent in all populations, highlighting the importance of the socioecological context, which likely influences the diverse mechanisms driving the relationship between fertility and subsistence. 
    more » « less